产品中心
产品中心
硅基负极材料研究及硅基负极材料的现状
来源:kok平台 | 作者:kok平台买球赛hiveyan | 发布时间: 2021-06-21 21:02:18 | 12 次浏览 | 分享到:

  在负极材料方面,目前商业化的锂离子电池主要以石墨为负极材料,石墨的理论比容量为372mAh/g,而市场上的高端石墨材料已经可达到360-365mAh/g,因此相应锂离子电池能量密度的提升空间已相当有限。因硅有较高理论比容量(高温4200mAh/g,室温3580mAh/g)、低的脱锂电位(<0.5V),且具有环境友好、储量丰富、成本较低等优点,硅基负极材料被认为是下一代高容量锂离子电池负极材料的首选。

  虽然硅基负极材料因其高比容量等优点被作为下一代负极材料广泛研究,但其要实现大规模应用还存在一些关键问题。

  材料的粉化与电极的破坏:在充放电过程中,硅和锂会进行合金化反应,硅的体积会发生100%-300%的膨胀,这种不断收缩膨胀会造成硅负极材料产生裂纹直至粉化,破坏电极材料与集流体的接触性,使得活性材料从极片上脱离,引起电池容量的快速衰减;其次,膨胀在电池内部会产生很大的应力,对极片形成挤压,随着多次循环,极片存在断裂的风险;再次,这种应力还可能造成电池内部孔隙率的降低,减少锂离子移动通道,造成锂金属的析出,影响电池安全性。

  不稳定的SEI膜:当负极处于低电位时,有机电解质会在负极表面进行分解,分解产生的物质在电极表面沉积,形成固体电解质界面膜,即为SEI(Solid Electrolyte Interphase)膜。SEI膜可以有效地阻止电池副反应的发生,因此,SEI膜的机械强度、完整性、电化学及热力学稳定性等是决定电池循环性能的关键。而硅负极表面的 SEI膜会随着硅体积的变化而发生破裂,新暴露在表面的硅在充放电过程中会继续生成新的SEI膜。持续生长的SEI膜会不断地消耗来自正极的锂和电解液,最终导致电池的内阻增加和容量的迅速衰减。

  导电性:硅的导电性能较差,在高倍率下不利于电池容量的有效释放,也是制约其进一步应用的因素之一。目前的研究方向:对硅基负极材料的改性研究主要集中在如何解决体积效应、维持SEI膜稳定和提高首次库伦效率3个方面。主要措施有:硅源的 改性研究、硅碳复合材料及其结构设计、氧化亚硅负极材料等。

  纳米硅:研究表明,纳米化的硅可以显著减小硅的体积效应。通过减小硅材料的粒径,可以缩短锂离子的扩散距离,提高锂离子嵌入脱出的电化学活性,进而降低硅在充放电过程的体积变化。同时,纳米化的硅之间存在大量的空隙,也会有效缓解体积膨胀对材料的影响。然而,纳米化的硅同样具有一些缺点:颗粒之间易团聚形成二次颗粒,降低电池容量;此外,硅的纳米化制备过程复杂、成本高等使其难以规模化生产。

  多孔硅:硅的多孔化是解决硅体积效应的有效手段之一。多孔硅常用模板法来制备,硅的内部空隙一方面可以为硅在脱嵌锂过程中的体积膨胀预留缓冲空间,缓解材料的应力,另一方面可以提高锂离 子往材料内部的输运效率。其与碳源复合后的材料,在循环过程中具有更加稳定的结构。

  合金硅:实验表明,通过引入第二组元形成Si-M合金,其中M可以是对锂惰性的金属,如Fe、Mn、Cu等;也可以是能够参与锂脱嵌反应的金属,如 Mg、Ca、Sn等,一方面可以利用M基体的延展性、成键特性等有效降低硅合金的体积膨胀系数,减少硅体积效应对材料循环稳定性的影响,另一方面可以利用基体M高的电子导电率来提高了硅与锂的电荷传递反应。

  制备复合材料目的:是对材料进行改性的常规方法,这同样适合于硅基材料。将硅材料与碳材料进行复合,制备出结构稳定的硅碳复合材料是提高锂离子电池循环稳定性的有效方法。其目的主要有:①通过和导电性良好的碳材料进行复合来改善硅材料的导电性;②通过包覆、结构设计等来提高硅基材料的机械强度,缓冲或释放机械应力,维持材料的结构稳定性。

  碳源选择:碳纳米管、纳米线、纳米棒等一维碳材料具有强度高、韧性大、高导电性等特点,其互相交联可以形成三维导电网络,促进电子的有效传输和锂离子的快速扩散。另外,交联网络结构具有机械强度高和空隙丰富等特点,可以有效缓解外部应力及自身体积的变化,使材料具有更好的结构稳定性。①无定型碳通常由有机碳前驱体经过高温碳化得到,大多具有较高的可逆比容量,与电解液相容性较好。采用无定型碳作为基体不仅起到很好 的体积缓冲作用,而且提高了材料的导电性能;②石墨是目前应用最广泛的锂离子电池负极材料,原料来源广泛且价格低廉。石墨在充放电过程中体积变化小,循环稳定性能良好。将石墨与硅基材料进行复合,石墨较高的电导率可以改善硅的导电性,其层状结构可缓冲硅的体积膨胀,避免复合材料的结构坍塌。但石墨和硅在常温下的化学性质稳定,二者的结合较难,多通过石墨-硅-无定型碳的方式实现三元复合。这种复合方式可以同时提高材料的首次充放电效率和循环稳定性,也是产业上最常用的方法之一。

  结构设计:通过与不同的碳源复合可以显著改善硅基材料的性能,但由于其体积效应仍然存在,因此复合材料的结构设计,对提高材料的性能同样至关重要。①核壳结构构造的目的在于通过外壳的碳层为内核硅或硅合金的体积膨胀提供缓冲层,最大限度的避免硅与电解液的直接接触,减少SEI膜的持续生成,有利于电池循环性能的提升;②蛋黄-壳结构是在核壳结构的基础上,通过一定技术手段,在内核与外壳间引入空隙部分,进而形成的一种新型结构复合材料。尽管蛋黄-壳结构的预留空间能够有效缓冲Si的体积膨胀,但这种结构减小了核壳之间的电接触,增加了材料的电化学阻抗,并不利于高速的电子转移和锂离子迁移。因此多通过在复合材料中引入长径比的导电添加剂来改善活性硅的导电性来;③三明治结构一般指通过技术手段将硅纳米颗粒像“三明治”一样夹在石墨等碳材料堆积的弹性层中,可以有效的抑制硅与电解液的接触。这种先进的结构设计一方面可以提供较高的导电网络,另一方面可以阻碍硅在充放电过程中的粉化失效。

  为了解决硅材料在充放电过程中的体积效应, 制备氧化亚硅(SiOx)材料是其中的方法之一。SiOx一般通过化学气相沉积的方式将2-10nm的硅颗粒均匀地分布在SiO2的基质中,其单体容量一般为1300-1700mAh/g。SiOx相比Si材料,SiOx材料在嵌锂过程中的体积膨胀大大减小,其循环性能得到极大提升。但是SiOx材料的首效一般较低,一定程度上限制了其在全电池中的使用。

  氧化亚硅材料的改性:虽然氧化亚硅的膨胀大为减小,但同样需要避免材料在循环过程中的颗粒破碎和粉化。此外,氧化亚硅的电子导电性较差,导致电池倍率性能较差。为了进一步提高SiOx负极的电化学,对其进行碳包覆是最常见的方法。氧化亚硅 -碳复合材料也是目前应用最为广泛的硅基负极材料。纳米化也是SiOx材料的常用方法,通过高能球磨等方式控制SiOx材料的粒径可以显著改善其电化学性能。SiOx材料中的O的含量对于其循环性能也有着重要的影响。O含量高会导致材料的首效降低,但也会显著地提高材料的循环性能。结果表明,随着氧含量的增加,SiOx材料在反应中会产生较多的非活性物质,导致材料的比容量降低,但会显著提高材料的循环性能。

  氧化亚硅材料的预锂化:SiOx材料的首次效率过低是其在应用中的最关键问题。SiOx材料中的SiO2组分在首次嵌锂过程中生成的Li2O和Li4SiO4非活性相虽然能够很好地缓冲材料的体积膨胀,但是也消耗了大量的Li,因此导致该材料的不可逆容量很高,首次效率一般仅为70%左右。目前较为实际的解决办法主要是通过向正极或者负极添加少量的Li源,在充电的过程中利用这部分额外的Li补充首次充电过程中不可逆的Li消耗,以达到提升锂离子电池首次效率的目的。此外,将SiOx与金属元素(如 Al、Li等)进行预反应(球磨或热处理), 使金属元素还原SiOx中的O,生成纳米Si /Al2O3(Li2O)复合电极材料,从而提高其首次库仑效率。

  相比传统石墨,硅基负极材料在容量方面具有明显的优势。随着对锂离子电池能量密度的要求不断提高以及电池厂商对于高镍体系掌握的逐步成熟,硅基负极材料的应用已逐步展开。

  根据高工产研锂电研究所(GGII)统计分析, 2018年中国硅基负极材料产量达5440t,同比增长2.3倍,硅基负极材料的市场即将进入高速增长期。当前市场对硅基负极材料的需求主要集中在容量为420mAh/g、450mAh/g的两款材料,更高克容量的硅基负极的应用市场还没成熟。在市场应用方面,硅基负极的应用仍比较局限,目前主要应用在3C消费类电子产品用到的圆柱电池及少量软包电池。特斯拉在量产的 Model 3 上对硅碳负极的成功应用 给硅基负极在圆柱动力乃至其他类型的动力电池中的应用带来了极大的信心。相信随着硅基负极制备工艺的不断完善和产业规模化的逐步成熟,硅基负极将迎来更为广阔的市场。

  目前,硅基负极材料的生产集中度很高,国内具备量产能力的企业不超过3家,大多企业处于研发及小试阶段。研发或生产硅基负极的企业类型主要有:现有石墨类负极企业,如贝特瑞、上海杉杉等;校企合作的团队,如和江西紫宸及中科院密切合作的 天目先导等;再有就是电池企业跨界进入上游材料领域,如国轩高科、宁德时代等。

  在技术路线选择上,硅基负极材料主要分为两种:硅碳复合负极材料和氧化亚硅负极材料。在氧化亚硅负极方面,由于日韩企业起步较早,处于领先地位,已经推出了多种较为成熟的SiOx产品,并开发了多款相匹配的粘结剂以减少硅基负极的体积效 应。此外,国外还通过预锂化技术来解决氧化亚硅材料首次效率低的问题。国内厂家近年来也开始尝试将SiOx负极材料推向市场,但是相比于日韩厂家仍然有一定的差距,但是从各大厂家的评估结果来看,总体上国内厂家硅负极材料技术与日韩厂家的 差距正在不断缩小,甚至在某些指标上还具有一定的优势。

  在硅碳复合负极方面国外部分企业已经实现了硅碳负极材料的量产。日立化成是全球最大的硅碳负极供应商,特斯拉使用的硅碳就由其供应。另外日本信越、吴宇化学、美国安普瑞斯等也可提供硅碳负极产品。然而,国内企业在硅碳负极产业化方面动作较慢。除贝特瑞的硅碳复合负极材料已有国外批量订单外,国内企业硅碳负极的产业化应用都在推进中。正因如此,硅碳负极在研发和应用方面面临着较高的技术壁垒。

  材料性能:硅基负极材料的性能还有待提高。硅碳复合负极的首效可以达到86%-91%,以接近石墨产品,但其长循环后的容量保持率离石墨负极还有较大的差距。氧化亚硅负极材料的循环性能较好,但其明显偏低的首次效率又制约了其应用。解决这些问题除了上文提到的优化材料的制备工艺外,还需要从整个电池的工艺去着手解决。

  材料成本:硅基负极材料的成本还有待降低。硅基负极相对于石墨负极材料的制备工艺复杂,大规模生产存在一定困难,且各家工艺均不同,产品目前没有达到标准化,导致其价格一直居高不下。如硅基负极材料的制备过程中多用到纳米硅粉,其生产对设备的要求极高,需要较大的资金投入且生产 过程中能耗较大,进而推高了硅基材料的价格。相信随着制造工艺的成熟和技术的革新,以及硅基材 料市场需求的不断扩大,规模化生产后硅基材料的 加工成本必将逐渐下行。

  生产工艺:硅基材料的电池工艺还有待成熟。电池的制备流程以及匹配的主、辅材对硅基材料的 性能发挥影响很大。近年来,虽然部分电池企业在 硅基材料的应用中取得了一定的技术突破,但整体 而言其技术工艺还不够成熟。硅基电解液的开发、 预锂化技术的应用、粘结剂的选择等工作都需要电 池和负极材料厂商共同开展,以加快硅基负极材料 的产业化应用。